155 research outputs found

    Linking Unit Tests and Properties

    Get PDF
    QuickCheck allows us to verify software against particular proper- ties. A property can be regarded as an abstraction over many unit tests. QuickCheck uses generated random input data to test such properties. If a counterexample is found, it becomes immediately clear what we have tested. This is not the case when all tests pass, since we do not (and shall not) see the actual generated test cases. How can we be sure about what is tested? QuickCheck has the ability to gather statistics about the test cases, which is insightful. But still it does not tell us whether the particular unit test scenarios we have in mind are included. For this reason, we have developed a tool that can answer this question. It checks if a given unit test can be generated by a property, making it easier to judge the property’s quality. We have applied our tool to an industrial use case of testing the AUTOSAR basic software modules and shows that it can handle complex models and large unit tests

    Understanding Formal Specifications through Good Examples

    Get PDF
    Formal specifications of software applications are hard to understand, even for domain experts. Because a formal specification is abstract, reading it does not immediately convey the expected behaviour of the software. Carefully chosen examples of the software’s behaviour, on the other hand, are concrete and easy to understand—but poorly-chosen examples are more confusing than helpful. In order to understand formal specifications, software developers need good examples.We have created a method that automatically derives a suite of good examples from a formal specification. Each example is judged by our method to illustrate one feature of the specification. The generated examples give users a good understanding of the behaviour of the software. We evaluated our method by measuring how well students understood an API when given different sets of examples; the students given our examples showed significantly better understanding

    Design, Manufacturing, and Testing of Robo Raven

    Get PDF
    Most current bird-inspired flapping wing air vehicles (FWAVs) use a single actuator to flap both wings. This approach couples and synchronizes the motions of the wings while providing a variable flapping rate at a constant amplitude or angle. Independent wing control has the potential to provide a greater flight envelope. Driving the wings independently requires the use of at least two actuators with position and velocity control. Integration of two actuators in a flying platform significantly increases the weight and hence makes it challenging to achieve flight. We used our successful previous designs with synchronized wing flapping as a starting point for creating a new design. The added weight of an additional actuator required us to increase the wing size used in the previous designs to generate additional lift. For the design reported in this paper, we took inspiration from the Common Raven and developed requirements for wings of our platform based on this inspiration. Our design process began by selecting actuators that can drive the raven-sized wing independently to provide two degrees of freedom over the wings. We concurrently optimized wing design and flapping frequency to generate the highest possible lift and operate near the maximum power operating point for the selected motors. The design utilized 3D printed parts to minimize part count and weight while providing a strong fuselage. The platform reported in this paper, known as Robo Raven, was the first demonstration of a bird-inspired platform doing outdoor aerobatics using independently actuated and controlled wings. This platform successfully performed dives, flips, and buttonhook turns demonstrating the capability afforded by the new design

    High stakes and low bars: How international recognition shapes the conduct of civil wars

    Get PDF
    When rebel groups engage incumbent governments in war for control of the state, questions of international recognition arise. International recognition determines which combatants can draw on state assets, receive overt military aid, and borrow as sovereigns—all of which can have profound consequences for the military balance during civil war. How do third-party states and international organizations determine whom to treat as a state's official government during civil war? Data from the sixty-one center-seeking wars initiated from 1945 to 2014 indicate that military victory is not a prerequisite for recognition. Instead, states generally rely on a simple test: control of the capital city. Seizing the capital does not foreshadow military victory. Civil wars often continue for many years after rebels take control and receive recognition. While geopolitical and economic motives outweigh the capital control test in a small number of important cases, combatants appear to anticipate that holding the capital will be sufficient for recognition. This expectation generates perverse incentives. In effect, the international community rewards combatants for capturing or holding, by any means necessary, an area with high concentrations of critical infrastructure and civilians. In the majority of cases where rebels contest the capital, more than half of its infrastructure is damaged or the majority of civilians are displaced (or both), likely fueling long-term state weakness

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    An r -process enhanced star in the dwarf galaxy Tucana III

    Get PDF
    Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66−593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain rprocess enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them

    Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT

    Get PDF
    We search for excess γ-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted γ-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~2σ local) for γ-ray emission in excess of the background. However, the ensemble of derived γ-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance 1 TeV and mDM,t+t-> 70 GeV) and weakening by a factor of ~1.5 at lower masses relative to previously observed limits
    • …
    corecore